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Summary

In the field of Statistics of Extremes, the most common assumption on any
set of univariate data is to consider them as a complete sample of either in-
dependent and identically distributed or weakly dependent and stationary
observations, from an unknown distribution function F . However, in the
analysis of lifetime data, observations are usually randomly censored. We
assume the case of random censorship, and dedicate our attention to the
estimation of the extreme value index (EVI), the primordial parameter of
extreme events. Such a parameter measures the heaviness of the right tail
and its estimation has been widely studied in the literature, for complete
samples. If we are under a random censoring scheme, any of the common
EVI estimators needs to be slightly modified in order to be consistent. We
pay special attention to such estimation, making use of an adequate set
of semi-parametric EVI estimators, among which we select second-order
reduced-bias estimators. The performance of those estimators is illus-
trated through the use of Monte Carlo simulations and the application
of the methodology to a few sets of survival data, available in the literature.

Key words: extreme value index estimation, censoring schemes.

1. Introduction, motivation and scope of the paper

In Statistics of Extremes we deal essentially with the estimation of param-
eters of extreme or even rare events. The most common assumption on
any set of univariate data, (X1, X2, . . . , Xn), is to consider them as a com-
plete sample of size n, with observations either independent and identically
distributed (i.i.d.) or weakly dependent and stationary, from an unknown
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distribution function (d.f.) F ≡ FX . There is a large variety of parameters
of extreme events, but in all applications of extreme value theory (EVT),
the estimation of the extreme value index (EVI), usually denoted γ, is of
primordial importance and is the basis for the estimation of all other param-
eters of extreme events. Among the most relevant parameters of extreme
events, and assuming that we are interested in large values, i.e., in the right
tail of the underlying model F , we mention:

• the probability of exceedance of a high level x ≡ xH , px := P(X > x) =
1− F (x) =: F (x),

• the return period of a high level x, which is given by rx := 1/(1−F (x))
in any i.i.d. scheme,

• the right endpoint of an underlying model F , x∗ ≡ xF := sup{x :
F (x) < 1}, and

• a high quantile of probability 1 − p, p small, situated in the border
or even beyond the range of the available data, defined as χ1−p :=
inf {x : F (x)  1− p} =: F←(1− p), p < 1/n.

However in many real situations, censored observations can occur. For ex-
ample, and among other cases, censored observations appear

• in the analysis of lifetime data or reliability data and

• in the analysis of some physical phenomena such as wind speeds,
earthquake intensities or floods, where extreme measurements are
sometimes not available due to damage to the instruments.

We shall pay special attention here to the estimation of the extreme value
index γX under random censorship, where apart from two recent papers by
Einmahl et al. (2008) and Gomes and Neves (2010), there is only, as far as
we know, a brief reference to the topic in Reiss and Thomas (1997, Section
6.1) and a paper by Beirlant et al. (2007).
In Section 2 of this paper, we provide a few details on the EVI and

max-domains of attraction. Next, in Section 3, we introduce a set of semi-
parametric EVI estimators, valid for complete samples, the Hill (Hill, 1975),
the moment (Dekkers et al., 1989), the generalized Hill (Beirlant et al.,
1996), a minimum-variance reduced-bias (MVRB) Hill (Caeiro et al., 2005)
and the mixed moment (Fraga Alves et al., 2009) EVI-estimators, providing
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some details on their asymptotic non-degenerate behavior. In Section 4, we
illustrate the effect of random censorship on the EVI of the potential, non-
available sample X = (X1, . . . , Xn). This is done in order to motivate the
functional expression of the EVI estimators for randomly censored data,
provided in Section 4.2. We shall now anticipate some of the recommenda-
tions. For heavy tails, i.e., for a positive EVI, we strongly advise the use of
any of the recent MVRB EVI-estimators introduced and studied in Caeiro
et al. (2005) and Gomes et al. (2007, 2008b). For a general tail, and par-
ticularly if we have a clear indication that the right tail is light, we suggest
the use of second-order reduced-bias EVI-estimators associated with either
the generalized Hill or the mixed moment EVI-estimators. This kind of es-
timators has not yet been considered in the literature, essentially due to the
difficulties of estimating second-order parameters or functionals for a gen-
eral tail, a topic that deserves further attention, but is outside the scope
of this paper. In Section 5, we present the results of a small-scale Monte
Carlo simulation devised to obtain the behavior of the EVI-estimators in
Sections 3 and 4.2. In Section 6, we illustrate the behavior of the same
EVI-estimators for a few sets of survival data, available in the literature,
providing some further hints for adequate EVI-estimation. Finally, in Sec-
tion 7, we provide some concluding remarks and mention a few items of
future research in the topic.

2. Max-domains of attraction and the EVI

For large values, the EVI measures essentially the heaviness of the right
tail F = 1−F of an underlying model F . It is in fact the real parameter γ
in the extreme value (EV) d.f.,

EVγ(x) =

{
exp(−(1 + γx)−1/γ), 1 + γx > 0 if γ 6= 0
exp(− exp(−x)) if γ = 0.

(1)

This d.f. appears as the limiting distribution of the sequence of maximum
values, linearly normalized, whenever such a non-degenerate limit does ex-
ist. We then say that F is in the domain of attraction (for maxima) of EVγ ,
and write F ∈ DM(EVγ).
As mentioned before, and illustrated in Figure 1, the extreme value

index γ measures essentially the weight of the right tail F .

• If γ < 0, the right tail is light, and F has a finite right endpoint
(x∗ < +∞);
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Figure 1. P.d.f. gγ(x) = dEVγ(x)/dx, for γ = −0.5, γ = 0 and γ = 1.5, together
with the normal p.d.f., φ(x) = exp(−x2/2)/

√
2π, x ∈ R.

• If γ > 0, the right tail is heavy, of negative polynomial type, and F
has an infinite right endpoint;

• If γ = 0, the right tail is of exponential type. The right endpoint can
then be either finite or infinite.

2.1. First and second-order conditions in EVT

The following extended regular variation property (de Haan, 1984) is a well-
known necessary and sufficient condition for F ∈ DM (EVγ):

lim
t→∞

U(tx)− U(t)
a(t)

=

{
xγ−1
γ if γ 6= 0
lnx if γ = 0,

(2)

for every x > 0 and some positive measurable function a, with U standing
for a quantile-type function associated with F and defined by

U(t) :=
( 1
1− F

)←
(t) = inf

{
x : F (x)  1− 1t

}
, t  1.

Apart from the first-order condition, in (2), we often need a second-order
condition, specifying the rate of convergence in the first-order condition.
More restrictively than F ∈ DM (EVγ), we then assume the existence of
a function A, possibly not changing in sign, but necessarily tending to zero,
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as t→∞, such that

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1γ
A(t)

= Hγ,ρ(x) :=
1
ρ

(xγ+ρ − 1
γ + ρ

− x
γ − 1
γ

)
, (3)

for all x > 0, where ρ ¬ 0 is a second-order parameter controlling the
speed of convergence of maximum values, linearly normalized, towards the
extreme value limit law, in (1). Then |A| is regularly varying with an index
of regular variation equal to ρ (see Bingham et al., 1997, for details on
regular variation). Even slightly more restrictively, we often assume that
ρ < 0. We can then choose A(t) = γβtρ in the second-order condition in (3).

3. Semi-parametric EVI estimation for complete data

For complete samples, now denoted Z = (Z1, . . . , Zn), and for a general EVI
estimation, i.e. for γ ≡ γZ ∈ R, we shall mention the moment (Dekkers et
al., 1989), the generalized Hill (Beirlant et al., 1996) and the mixed moment
(Fraga Alves et al., 2009) estimators. For j  1, 1 ¬ k < n, and with
Zi:n, 1 ¬ i ¬ n denoting, as usual, the set of ascending order statistics
(o.s.’s) associated with the sample (Z1, Z2, . . . , Zn), let us denote

L
(j)
k,n ≡ L

(j)
k,n(Z) :=

1
k

k∑
i=1

{
1− Zn−k:n/Zn−i+1;n

}j
and

M
(j)
k,n ≡M

(j)
k,n(Z) :=

1
k

k∑
i=1

{lnZn−i+1:n − lnZn−k:n}j .

The moment (M) estimator is given by

M =Mk ≡ γ̂Mk,n(Z) :=M
(1)
k,n +

1
2

{
1−
(
M
(2)
k,n/[M

(1)
k,n]
2 − 1

)−1}
, (4)

and the mixed moment (MM) estimator has the functional form,

MM =MMk ≡ γ̂MMk,n (Z) :=
ϕ̂k,n−1

1+2min(ϕ̂k,n−1,0)
,

ϕ̂k,n :=
M
(1)
k,n
−L(1)
k,n(

L
(1)
k,n

)2 . (5)
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For heavy tails, i.e. whenever γ ≡ γZ > 0, we mention the classical Hill
estimator (Hill, 1975), with the functional expression

H = Hk ≡ γ̂Hk,n(Z) :=
1
k

k∑
i=1

lnZn−i+1:n − lnZn−k:n ≡M
(1)
k,n(Z), (6)

1 ¬ k < n, and one of the most recent minimum-variance reduced-bias
(MVRB) estimators of the extreme value index (Caeiro et al., 2005), given by

H = Hk ≡ γ̂Hk,n(Z) := Hk
(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
, (7)

with (β̂, ρ̂) adequate consistent estimators of the vector (β, ρ) of second or-
der parameters, involved in the function A(t) = γβtρ, in (3) (see Gomes and
Pestana, 2007, for an algorithm related to such estimation and application
to the estimation of high quantiles).
The generalized Hill (GH) estimator is also defined for k = 2, . . . , n− 1,

and is a generalization of the Hill estimator, in (6), being valid for a general
γ ≡ γZ , like the estimators in (4) and (5). It is given by

GH = GHk ≡ γ̂GHk,n (Z) :=
1
k

∑k
j=1 lnUHj,n − lnUHk,n,

UHj,n := Zn−j:nHj , 1 ¬ j ¬ k,
(8)

with Hk defined in (6). To enhance the similarity between the M estimator,
in (4), and the GH estimator, in (8), we can also write an asymptotically
equivalent expression for GHk, given by

GH∗k := Hk +
1
k

k∑
i=1

{
lnHi − lnHk

}
.

In all these papers the available sample is complete, and for the above-
mentioned estimators, as well as for other EVI estimators, we can prove con-
sistency, i.e. convergence in probability to γ ≡ γZ in the domain of attrac-
tion where they are valid, for any intermediate k, i.e. whenever k = kn →∞
and kn → 0, as n → ∞. Under the additional validity of the second-order
condition in (3), we can guarantee the asymptotic normality of γ̂•k,n, i.e.,
for any k = 2, . . . , n − 1, there exist a standard normal random variable
(r.v.) P •k and real functions σ

• = σ•(γ) and b• = b•(γ, ρ) such that

γ̂•k,n
d= γ +

γσ•P •k√
k
+ b•A(n/k) + op(A(n/k)).
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For the MVRB corrected-Hill estimatorH, in (7), bH ≡ 0 and σH = σH = γ
for all γ > 0, i.e. Hk outperforms Hk for all k.

4. Random censoring and EVI estimation

Let us now assume that, with FX ∈ DM(EVγ1), γ1 ≡ γX , we are under
a framework of random censorship, i.e., there is a r.v. Y such that FY ∈
DM(EVγ2) and only Z = X∧Y and δ = I{X¬Y } are observed. The indicator
variable δ determines whether X has been censored or not. Let us denote
γ ≡ γZ , the EVI associated with Z, i.e., let us assume that FZ ∈ DM(EVγ).
We thus have access to the random complete sample (Zi, δi), 1 ¬ i ¬ n, of
independent copies of (Z, δ), but our goal is to make inference on the right
tail of the unknown lifetime distribution of X, i.e. on FX (x) := P(X > x) =
1 − FX (x), while FY , the d.f. of Y , is considered to be a nonparametric
nuisance parameter. As mentioned in Einmahl et al. (2008), all the EVI
estimators need to be slightly modified in order to be consistent for the
estimation of γ1 ≡ γX in the whole domain of attraction DM(EVγX ), and,
with τX and τY denoting the right endpoints of FX and FY , respectively,
the cases of interest are:

• Case 1: γ1 > 0, γ2 > 0.

• Case 2: γ1 < 0, γ2 < 0 and τX = τY .

• Case 3: γ1 = 0, γ2 = 0 and τX = τY = +∞.

In all the above mentioned cases, we have γ = γ1γ2/(γ1 + γ2), with the
notation γ = 0, in Case 3.

4.1. A few naive comments on random censoring

As mentioned above, let us consider that instead of a potential sample
(X1, X2, . . . , Xn) (non-observed), and assuming Y independent of X, we
observe (Zi, δi), 1 ¬ i ¬ n, with Z = min(X,Y ), δ = I{X¬Y }. Let us
assume that FX ∈ DM(Gγ1), with γ1 ≡ γX the parameter we really want to
estimate, and that FY ∈ DM(Gγ2). To motivate how to estimate γ1 ≡ γX ,
let us begin with some examples.

Example 1. We shall first simplify the problem, assuming that we are
in Case 1 and X and Y are Pareto(γ1) and Pareto(γ2), respectively, i.e.
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for all x  1, FX (x) = 1 − x−1/γ1 and FY (x) = 1 − x−1/γ2 , γ1, γ2 > 0.
Consequently,

FZ (z) = P
(
min(X,Y ) ¬ z

)
= 1− P(X > z)P(Y > z)

= 1− z−1/γ1z−1/γ2 = 1− z−
γ1+γ2
γ1γ2 ,

i.e. Z ∼ Pareto(γ1γ2/(γ1+γ2)), and we can use the available semi-parametric
estimators in Section 3 to estimate γ = γ1γ2/(γ1 + γ2).
On the other hand, with f•(·) denoting the probability density function

associated with F•(·),

p ≡ pz := P(X ¬ Y |Z = z) = P(δ = 1|Z = z) = fX (z)(1− FY (z))
fZ (z)

=
1
γ1
z−1/γ1−1 z−1/γ2( 1

γ1
+ 1γ2
)
z−1/γ1−1/γ2−1

=
γ2
γ1 + γ2

.

Consequently, the quotient between any estimator of γ ≡ γZ and an esti-
mator of p ≡ pZ will provide an estimator of γX ≡ γ1, the parameter of
interest.

Example 2. Let us assume now that we are in Case 2, and that X and
Y are both generalized Pareto (GP) r.v.’s, with shape parameters γ1 < 0,
γ2 < 0, respectively, and the same right endpoint. We can then consider,
without loss of generality, FX (x) = 1− (1 + γ1x)−1/γ1 , 0 ¬ x < −1/γ1 and
FY (x) = 1− (1 + γ1x)−1/γ2 , 0 ¬ x < −1/γ1. Then
FZ (z) = 1− (1 + γ1z)

−1/γ1(1 + γ1z)−1/γ2 = 1− (1 + γ1z)−(γ1+γ2)/(γ1γ2),

fZ (z) =
γ1 + γ2
γ2
(1 + γ1z)−(γ1+γ2)/(γ1γ2)−1,

and

p ≡ pz := P(X ¬ Y |Z = z)

=
γ1(1 + γ1z)−1/γ1−1(1 + γ1z)−1/γ2−1

(γ1 + γ2)(1 + γ1z)−(γ1+γ2)/(γ1γ2)−1
=
γ2
γ1 + γ2

,

as happens for Pareto heavy tailed models.

Example 3. For heavy tails again, but for the GP models in Example 2,
let FX (x) = 1−(1+γ1x)−1/γ1 and FY (x) = 1−(1+γ2x)−1/γ2 , for all x  0,
γ1, γ2 > 0. We then get

FZ (z) = 1− (1 + γ1z)
−1/γ1(1 + γ2z)−1/γ2 ,

fZ (z) = (1 + γ1z)
−1/γ1−1(1 + γ2z)−1/γ2

(
1 +
1 + γ1z
1 + γ2z

)
,
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and

p ≡ pz := P(X ¬ Y |Z = z)

=
(1 + γ1z)−1/γ1−1(1 + γ2z)−1/γ2

(1 + γ1z)−1/γ1−1(1 + γ2z)−1/γ2(1 + (1 + γ1)/(1 + γ2z)

=
1

1 + 1+γ1z1+γ2z

,

no longer equal to γ2/(γ1 + γ2). But

pz =
1

1 + 1+γ1z1+γ2z

−→
z→∞

γ2
γ1 + γ2

. (9)

Indeed, much more generally, and for all the above-mentioned Cases
1-2-3, FX ∈ DM(EVγ1), FY ∈ DM(EVγ2) =⇒ F

Z=min(X,Y ) ∈ DM(EVγ)
with γ = γ1γ2/(γ1 + γ2).
Also, the above-mentioned limiting result on pz = P(X ¬ Y |Z = z),

provided in (9), holds generally, for any FX ∈ DM(EVγ1), FY ∈ DM(EVγ2)
and the Cases 1-2-3 (see Einmahl et al., 2008). Consequently, any functional
based on the k + 1 top o.s.’s in the observed sample Z = (Z1, Z2, . . . , Zn),
devised for the estimation of the EVI in complete samples, and generically
denoted γ̂•

k,n
(Z), will converge towards γ1γ2/(γ1 + γ2) for intermediate k,

i.e. whenever

k = kn →∞ and
k

n
→ 0, as n→∞.

Moreover, and for the same intermediate k-sequences,

γ̂•
k,n,Z

p

p−→
n→∞

γ1 ≡ γX . (10)

4.2. Semi-parametric EVI estimation for randomly censored data

On the basis of (10), if we want to estimate the EVI in randomly censored
samples, we merely need to find an estimator of p ≡ pZ , where 1 − p is
the percentage of censoring in the right tail of FX . A possible, and the
most simple, semi-parametric consistent estimator of p has been provided
in Einmahl et al. (2008), and is merely given by

p̂C = p̂Ck ≡ p̂Ck,n :=
1
k

k∑
i=1

δ[n−i+1], (11)
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where δ[n−i+1], 1 ¬ i ¬ n, are the induced or concomitant o.s.’s asso-
ciated with the ascending ordering of (Z1, Z2, . . . , Zn), i.e. δ[n−i+1] is the
concomitant value of δ associated with Zn−i+1:n, 1 ¬ i ¬ n. An obvious
semi-parametric estimator of γX , based on the observed (Zi, δi), 1 ¬ i ¬ n
is thus

γ̂•
k,n
(X) :=

k γ̂•
k,n
(Z)∑k

i=1 δ[n−i+1]
.

As counterparts, for randomly censored data X, of the estimators in
Section 3, we shall now consider such simple modifications. With T denoting
any of the estimators M , MM , H, H and GH, in (4), (5), (7) and (8),
respectively, we shall consider the estimators

TC ≡ TCk ≡ γ̂Tk,n(X) := γ̂Tk,n(Z)/p̂C , (12)

with p̂C as given in (11). We shall study here the behavior of these esti-
mators through Monte Carlo simulation, and shall use them for the EVI
estimation associated with a few sets of survival data, available in the lit-
erature, providing some hints for adequate EVI estimation.

5. A small-scale Monte Carlo simulation

For heavy right–tails, we have consideredX ∈ DM(Gγ1), with γ1 = 0.25 cen-
sored by Y ∈ DM(Gγ2), with γ2 = γ1p/(1−p) (> 0) for p = 0.35(0.10)0.95.
This means that we allow a percentage of censoring in the right tail ranging
from 65% to 5%. We then get Z ∈ DM(Gγ), with γ = γ1γ2/(γ1+γ2), again
> 0. For light right-tails, we considered X ∈ DM(Gγ1), with γ1 = −0.25
censored by Y ∈ DM(Gγ2), with γ2 = γ1p/(1 − p) (< 0), again for p =
0.35(0.10)0.95. As before, we get Z ∈ DM(Gγ), with γ = γ1γ2/(γ1 + γ2)
(< 0). In the following table we present the values of |γ2| and |γ| associated
with the different values of p:

p 0.95 0.85 0.75 0.65 0.55 0.45 0.35
|γ2| 4.7500 1.4167 0.7500 0.4643 0.3056 0.2045 0.1346
|γ| 0.2375 0.2125 0.1875 0.1625 0.1375 0.1125 0.0875

We performed Monte Carlo simulations, based on 1000 runs, for the
following parents:

• X and Y are both Fréchet r.v.’s, with heavy right-tails. The Fréchet(γ)
d.f. is given by F (x) = exp(−x−1/γ), x  0, γ > 0;
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• X and Y are both Reversed-Burr (RB) r.v.’s, with light right-tails.
The RB(γ, β, λ, x∗) d.f. is F (x) = 1−

(
β/
(
β+(x∗−x)1/(λγ)

))λ
, x ¬ x∗.

5.1. Fréchet underlying parents

In Figure 2 we picture, for a sample size n = 1000, the mean values of the
different estimators under analysis, when we consider X ∼ Fréchet(γ1 =
0.25) censored by Y ∼ Fréchet(γ2 = 0.75). We thus have p = 0.75, i.e., we
have a censoring in the right tail equal to 25%, and we get for the observed
Z an extreme value index γ = γZ = 0.1875.
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Figure 2. Mean values of the Hill, bias-corrected Hill, moment, generalized Hill
and mixed moment estimators of γ1 = γX = 0.25 (left) and of γ = γZ = 0.1875
(right), based on observed Z-samples of size n = 1000 of X ∼ Fréchet(γ1 = 0.25)
censored by Y ∼ Fréchet(γ2 = 0.75) — p = 0.75 (25% censoring in the right tail).

In Figure 3 we picture, at the left, the root mean squared errors (RMSEs)
of the estimators in Figure 2, and at the right, the mean values and RMSEs
of the estimators, in (11), for the estimation of the known value p = 0.75.
If the censoring in the right tail is not too heavy, let us say smaller than

or equal to 25%, the results obtained for a sample size as small as n = 100
are still interesting, as can be seen in Figure 4 and Figure 5, equivalent to
Figure 2 and Figure 3 respectively, with the same percentage of censoring
in the right tail as before, but for n = 100.
For the same Fréchet model as before, but with a higher percentage of

censoring in the right tail, equal to 55%, we next present Figures 6, 7, 8
and 9, similar to Figures 2, 3, 4 and 5 respectively, but for p = 0.45.
We have now to pay special attention to the underestimation associated

with the M, GH and MM EVI-estimators, whenever n is small. Such an
underestimation leads to M and GH negative estimates of γ, for all k.
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Figure 3. RMSEs of the estimators in Figure 2 (left) and mean value (E)
and RMSE of the estimator of p = 0.75 (right).
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Figure 4. Mean values of the Hill, bias-corrected Hill, moment, generalized Hill
and mixed moment estimators of γ1 = γX = 0.25 (left) and of γ = γZ = 0.1875
(right), based on observed Z-samples of size n = 100 of X ∼ Fréchet(γ1 = 0.25)
censored by Y ∼ Fréchet(γ2 = 0.75) — p = 0.75 (25% of censoring in the

right tail).

This is the reason why we mentioned before, at the end of Section 1, the
need for bias-correction, already available in Gomes et al. (2008a) for these
heavy-tailed models, and these estimators. The bias-correction would lead
to positive estimates, and a clear improvement of the EVI estimation not
only for complete samples but also for censored samples, while performance
is currently very poor. Anyway, in all the cases presented, it is clear that
overall best performance comes from H, for complete samples, and HC for
randomly censored samples.
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Figure 5. RMSE’s of the estimators in Figure 4 (left) and E and RMSE
of the estimator of p = 0.75 (right).
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Figure 6. Mean values of Hill, bias-corrected Hill, moment, generalized Hill and
mixed moment estimators of γ1 = γX = 0.25 (left) and γ = γZ = 0.1125 (right),
based on the observed Z-samples of size n = 1000 of a X ∼ Fréchet(γ1 = 0.25)
censored by Y ∼ Fréchet(γ2 = 0.2045) — p = 0.45 (55% of censoring in the

right tail).

5.2. Reversed-Burr underlying parents

The following figures, from 10 to 17 are equivalent to figures from 2 to 9,
but for Reversed-Burr models. In these simulations, and due to the fact
that the EVI is negative, we have considered neither H, in (6), nor H, in
(7).
As happened before, for heavy right tails, and as expected, the EVI-

estimators for randomly censored samples always exhibit poorer behav-
ior than the corresponding ones associated with complete samples. Such
poor behavior becomes clearer when either the percentage of censoring in
the right tail increases or the sample size decreases. For these Reversed-
Burr parents, GH and GHC exhibit the best performance among all the
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Figure 7. RMSE’s of the estimators in Figure 6 (left) and E and RMSE
of the estimator of p = 0.45 (right).
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Figure 8. Mean values of Hill, bias-corrected Hill, moment, generalized Hill and
mixed moment estimators of γ1 = γX = 0.25 (left) and γ = γZ = 0.1125 (right),
based on the observed Z-samples of size n = 100 of a X ∼ Fréchet(γ1 = 0.25)
censored by Y ∼ Fréchet(γ2 = 0.2045) — p = 0.45 (55% of censoring in the

right tail).

estimators considered in this paper, and bias-corrected M , GH and MM
EVI-estimators, valid for a general γ ∈ R, are surely advisable and welcome.

6. Applications to survival data sets

We have analyzed several data sets, available in Klein and Moeschber-
ger (2005), among which we mention:

D1. Data on 80 males diagnosed with cancer of the tongue, with Z de-
noting time to death or on-study time, in weeks (Section 1.11; Sickle-
Santanello et al., 1988);



Estimation of the Extreme Value Index for Randomly Censored Data 15

0.0

0.2

0.4

0 20 40 60 80 100

H
C

H
C

H

H

MM
C

MM

 

k

RMSE(•)

GH

GH
C

M

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

 

k
 

p = 0.45

E( p̂
C
)

RMSE( p̂
C
)

Figure 9. RMSE’s of the estimators in Figure 8 (left) and E and RMSE
of the estimator of p = 0.45 (right).
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Figure 10. Mean values of moment, generalized Hill and mixed moment
estimators of γ1 = γX = −0.25 (left) and of γ = γZ = −0.1875 (right), based on
observed Z-samples of size n = 1000 of X ∼ RB(−0.25, 1, 0.5, 10) censored by
Y ∼ RB(−0.75, 1, 0.5, 10) — p = 0.75 (25% of censoring in the right tail).

D2. Data on 50 allotransplant and 51 autotransplants. The leukemia-free
survival indicator is set at 0 whenever the person is alive without
relapse and set at 1 if the person is dead or with relapse (Section
1.9);

D3. Data on 90 males with larynx cancer, with Z denoting again time to
death or on-study time, in months (Section 1.8; Kardaun, 1983).

Although counterintuitive, there was an indication of a right tail clearly
heavier than the normal, and also heavier than the Gumbel, for the data
set in D1. (cancer of the tongue), where, due to the size of the sample (n =
80), we have jointly considered both kinds of tumor. However, the same
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Figure 11. RMSE’s of the estimators in Figure 10 (left) and E and RMSE
of the estimator of p = 0.75 (right).
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Figure 12. Mean values of moment, generalized Hill and mixed moment
estimators of γ1 = γX = −0.25 (left) and of γ = γZ = −0.1875 (right), based on
observed Z-samples of size n = 100 of X ∼ RB(−0.25, 1, 0.5, 10) censored by
Y ∼ RB(−0.75, 1, 0.5, 10) — p = 0.75 (25% of censoring in the right tail).

comment applies if we distinguish the two kinds of tumors (aneuploid and
diploid). For the data in D3. (larynx cancer), we obtained no evidence
of a heavy right tail. Indeed the right tail of the model underlying this
data set can be considered exponential, i.e. there is no reason to reject the
hypothesis γZ = 0. All other data sets analyzed, and in particular the data
set in D2. (leukemia), clearly provide an indication of a light right tail, i.e.
that γZ < 0. We shall next provide the estimation of the extreme value
index γX for these three data sets.
In Figure 18 we provide estimates for γZ and γX on the left figure and

estimates of p in the right figure, as a function of k, the number of top o.s.’s
used in the estimation.
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Figure 13. RMSE’s of the estimators in Figure 12 (left) and E and RMSE
of the estimator of p = 0.75 (right).
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Figure 14. Mean values of moment, generalized Hill and mixed moment
estimators of γ1 = γX = −0.25 (left) and of γ = γZ = −0.1125 (right), based on
observed Z-samples of size n = 1000 of X ∼ RB(−0.25, 1, 0.5, 10) censored by
Y ∼ RB(−0.2045, 1, 0.5, 10) — p = 0.45 (55% of censoring in the right tail).

On the basis of any adequate stability criteria, we get the estimate
p̂ = 0.4, for the parameter p = P(δ = 1|Z = z). We have thus estimated
a reasonably high censoring in the right tail, around 60%. The consecutive
k values that lead to a difference |p̂Ck − p̂| ¬ 0.05 are 15 ¬ k ¬ 30, the
region pictured in Figure 18, top right. We were then led to the choice
k̂ := argmink |p̂Ck − p̂| = 25. For γZ , the use of any of the EVI estimators
under consideration leads us to the estimate γ̂Z = 0.4. The estimate of
γX at k̂ is γ̂X = 0.9. The best decision, again taking into account stability
criteria for the estimate sample paths, is the choice of Hk, in (7), for γZ and
the corresponding HCk , for γX . We were then led to γ̂ ≡ γ̂Z = H k̂ = 0.35,
and γ̂1 ≡ γ̂X = H

C
k̂ = 0.87, the values pictured in Figure 18.
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Figure 15. RMSE’s of the estimators in Figure 14 (left) and E and RMSE
of the estimator of p = 0.45 (right).
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Figure 16. Mean values of moment, generalized Hill and mixed moment
estimators of γ1 = γX = −0.25 (left) and of γ = γZ = −0.1125 (right), based on
observed Z-samples of size n = 100 of X ∼ RB(−0.25, 1, 0.5, 10) censored by
Y ∼ RB(−0.2045, 1, 0.5, 10) — p = 0.45 (55% of censoring in the right tail).

Figure 19 is similar to Figure 18, but for the data in D3. Note that
we were led to p̂ = 0.3, i.e., a censoring in the right tail around 70%, even
higher than before. The same arguments as before led us to 20 ¬ k ¬ 50,
and k̂ = 37. In this region of k-values, all estimates under consideration,
and valid for a general tail, are negative, i.e., the right-tail of the model
underlying the data is light, and we thus discarded the Hill (H) and the
MVRB (H) estimators, valid only for heavy right tails. The final EVI es-
timates were obtained through GHk, for the complete data, and GHCk , for
the randomly censored data. We were led to γ̂ ≡ γ̂Z = GHk̂ = −0.28, and
γ̂1 ≡ γ̂X = GHCk̂ = −0.94, the values pictured in Figure 19.
Figure 20 is also similar to Figure 18, for the data mentioned in D2.
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Figure 17. RMSE’s of the estimators in Figure 16 (left) and E and RMSE
of the estimator of p = 0.45 (right).
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Figure 18. Estimation of parameters associated with data relating to cancer
of the tongue.
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Figure 19. Estimation of parameters associated with data relating to larynx
cancer.

For this data set, the percentage of censoring in the right-tail is even higher
than before, around 80%. The same considerations as before led us to
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42 ¬ k ¬ 57, and k̂ = 45. Now, the MM-estimates are positive in this region
of k-values, but close to zero. The GH-estimates are slightly negative, but
quite close to zero. The M -estimates exhibit a neat fluctuating behavior
around zero, and we thus decided on the choice of Mk and MCk . We were
then led to γ̂ ≡ γ̂Z =Mk̂ = 0.01, and γ̂1 ≡ γ̂X =M

C
k̂
= −0.00, and we see

no reason to consider any deviation from an exponential right-tail, i.e., to
consider that γX = γZ = 0.
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Figure 20. Estimation of parameters associated with data relating to leukemia.

7. Concluding remarks and future research on the topic

We conclude by making the following remarks:
• Whenever dealing with randomly censored data and a semi-parametric
framework, i.e., whenever assuming that F ∈ DM(Gγ), for a certain γ, a
first test on the sign of γ, the EVI, is without doubt a sensible task. In
many areas where extreme events are relevant, the simplest case γ = 0 is
often considered. But if we clearly come to the conclusion that γ < 0 or that
γ > 0, we have specific procedures for the estimation of γ, possibly more
reliable than the procedures valid for a general γ ∈ R. Prior to a deeper
semi-parametric analysis of the tail associated with any type of data, it
thus seems sensible to test

H0 : F ∈ DM(Gγ)γ=0
(
or F ∈ DM(Gγ)γ0

)
versus

H1 : F ∈ DM(Gγ)γ<0,

through the use of any semi-parametric test statistic. Several test proce-
dures are available for complete data (see Neves and Fraga Alves, 2008,
for an overview and recent approaches), and similar procedures need to be
developed for randomly censored data.
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• As mentioned before, if confronted with a heavy right tail, i.e., a positive
EVI, we strongly advise the use of any of the recent MVRB EVI-estimators
introduced and studied in Caeiro et al. (2005) and Gomes et al. (2007,
2008b). For a general tail, and particularly if we have a clear indication that
the right tail is light, i.e., the EVI is negative, we suggest the use of a second-
order reduced-bias mixed moment or generalized Hill estimator, not yet
considered in the literature, essentially due to the difficulties of estimating
the functional A(t), in (3). The estimation of the second-order parameter
ρ, for a general tail has been provided in Fraga Alves et al. (2003). The
estimation of A(·) or of an adequate scale second-order parameter in the
above mentioned function A is still a topic for further research.
• A third open and relevant topic of related research is the development
of a reduced-bias estimation of the percentage of censoring in the right
tail of the underlying model. This will certainly lead to more precise EVI-
estimators under the schemes under consideration, i.e., under randomly
censored schemes. The non-degenerate asymptotic and finite-sample be-
havior of those estimators is then needed, and constitutes another open
topic of research in the field.
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